Finite Element Approximations to the Discrete Spectrum of the Schrödinger Operator with the Coulomb Potential
نویسندگان
چکیده
In the present paper, the authors consider the Schrödinger operator H with the Coulomb potential defined in R3m, where m is a positive integer. Both bounded domain approximations to multielectron systems and finite element approximations to the helium system are analyzed. The spectrum of H becomes completely discrete when confined to bounded domains. The error estimate of the bounded domain approximation to the discrete spectrum of H is obtained. Since numerical solution is difficult for a higher-dimensional problem of dimension more than three, the finite element analyses in this paper are restricted to the S-state of the helium atom. The authors transform the six-dimensional Schrödinger equation of the helium S-state into a three-dimensional form. Optimal error estimates for the finite element approximation to the three-dimensional equation, for all eigenvalues and eigenfunctions of the three-dimensional equation, are obtained by means of local regularization. Numerical results are shown in the last section.
منابع مشابه
Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملEvaluating the Soil Bearing Capacity Coefficients by Means of a Finite Element Program Based on Elasto - Plastic Mohr - Coulomb Behavior
A finite element program based on elastic –plastic model of Mohr-Coulomb criterion was used to evaluate the bearing capacity coefficients of soil under shallow strip flexible footing . The results were compared with others’ analytical results and it was found that the present study could offer quite consistent and rather precise values for the bearing capacity coefficients . 

The effect ...
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملEvaluating the Soil Bearing Capacity Coefficients by Means of a Finite Element Program Based on Elasto - Plastic Mohr - Coulomb Behavior
A finite element program based on elastic –plastic model of Mohr-Coulomb criterion was used to evaluate the bearing capacity coefficients of soil under shallow strip flexible footing . The results were compared with others’ analytical results and it was found that the present study could offer quite consistent and rather precise values for the bearing capacity coefficients . The effect of d...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2004